Blue Jackets

GP: 5 | W: 2 | L: 2 | OTL: 1 | P: 5
GF: 14 | GA: 15 | PP%: 25.00% | PK%: 86.36%
GM : Pascal Simoneau | Morale : 75 | Team Overall : 68
Next Games #90 vs Flyers
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Henrik Sedin (A)X100.005835827477889573858165557388853775690
2Max Domi (C)XX99.006241757469878472697966647265648475680
3Jason ChimeraXX100.007741756886789166626767656689802375670
4Mikkel BoedkerXX100.006435827076829169567068676977717075670
5Jimmy VeseyX100.006740796985829367586670676769676475670
6Tommy WingelsXX100.008041766674778764796465726478713975660
7Shane Doan (R)X100.007152746682786666717263576491932875660
8Brendan PerliniX100.006635837086827968546671646863638575660
9Kyle ConnorX100.005535846974837568526770646863658375650
10Drake CaggiulaXX100.007838786767827766716667676667654375650
11Matt ReadXXX100.006835836367796863566363716380732775640
12Jake VirtanenX100.007535796383777262566363646263638878630
13Brooks OrpikX100.008544756587839365306860835588783575720
14Adam Larsson (A)X100.009638846785878466306964825671678575720
15Brian DumoulinX100.007235896688868866306963755673686175690
16Jake McCabeX100.007341886779857867307063735769667175680
17Haydn Fleury (R)X100.007035866488798063306660685363628775650
18Derrick PouliotX100.006738846476797064306661605467658575630
Scratches
TEAM AVERAGE99.94713981677982826653686568637470617567
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Matt Murray100.00928889829190929190918467716375850
2Jacob Markstrom100.00838487928281838281827675816575810
Scratches
TEAM AVERAGE100.0088868887878688878687807176647583
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bruce Cassidy91939479827758CAN5221,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Adam LarssonBlue JacketsD5044-41001674490.00%912024.12022412000013000.00%000000.6600000000
2Brian DumoulinBlue JacketsD52242606651240.00%910921.91101311000015100.00%000000.7300000001
3Drake CaggiulaBlue JacketsC/LW531412091360550.00%18517.08101212000000046.61%11800000.9400000100
4Jimmy VeseyBlue JacketsLW52241007791922.22%29719.58101311000081036.36%2200000.8201000010
5Brooks OrpikBlue JacketsD5123-52012872614.29%712525.05011512000017000.00%000000.4800000001
6Jake McCabeBlue JacketsD51232206852520.00%510721.58011311000015010.00%000000.5600000010
7Max DomiBlue JacketsC/LW5213-540713106820.00%212224.571122110001200012.50%800000.4901000000
8Henrik SedinBlue JacketsC5022-500716133100.00%112525.080003110000230049.69%16100000.3201000000
9Mikkel BoedkerBlue JacketsLW/RW5022-3208671100.00%08016.0700000000000037.50%2400000.5000000000
10Shane DoanBlue JacketsRW5112111510411469.09%08517.11011112000010053.85%1300000.4700100000
11Haydn FleuryBlue JacketsD5011220652040.00%67314.800000000006000.00%000000.2700000000
12Matt ReadBlue JacketsC/LW/RW5011100142100.00%0244.9300000000010026.09%2300000.8100000000
13Tommy WingelsBlue JacketsC/RW50111001236150.00%1418.3600000000000026.67%4500000.4800000000
14Derrick PouliotBlue JacketsD5011-120620000.00%35310.710000000000000.00%000000.3700000000
15Kyle ConnorBlue JacketsLW51012203365416.67%05511.080000000000000.00%300000.3600000000
16Brendan PerliniBlue JacketsLW510130009102510.00%15711.5800000000000050.00%600000.3500000010
17Jason ChimeraBlue JacketsLW/RW5000120544650.00%06813.670000110000100040.00%500000.0000000000
18Justin FalkCleveland Monsters (CBS)D1000220200000.00%11414.570000000001000.00%000000.0000000000
19Jake VirtanenBlue JacketsRW4000000103110.00%0225.67000000000000100.00%100000.0000000000
Team Total or Average90142337-4495124118110409412.73%48147316.3746102611900011362142.89%42900000.5003100132
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jacob MarkstromBlue Jackets11001.0000.0060010180000.000014100
2Matt MurrayBlue Jackets41210.9063.4424420141490000.667341001
Team Total or Average52210.9162.7630421141670000.667355101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary AverageSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam LarssonBlue JacketsD251992-11-12No210 Lbs6 ft3NoNoNo3RFAPro & Farm3,000,000$3,000,000$3,000,000$2,796,610$No3,000,000$3,000,000$NHL Link
Brendan PerliniBlue JacketsLW221996-04-27No211 Lbs6 ft3NoNoNo1ELCPro & Farm833,000$833,000$833,000$776,525$NoNHL Link
Brian DumoulinBlue JacketsD271991-09-06No207 Lbs6 ft4NoNoNo2RFAPro & Farm800,000$800,000$800,000$745,763$No800,000$NHL Link
Brooks OrpikBlue JacketsD371980-09-26No217 Lbs6 ft3NoNoNo3UFAPro & Farm6,500,000$6,500,000$6,500,000$6,059,322$No6,500,000$6,500,000$NHL Link
Derrick PouliotBlue JacketsD241994-01-16No208 Lbs6 ft0NoNoNo1RFAPro & Farm832,500$832,500$832,500$776,059$NoNHL Link
Drake CaggiulaBlue JacketsC/LW241994-06-20No185 Lbs5 ft10NoNoNo1RFAPro & Farm925,000$925,000$925,000$862,288$NoNHL Link
Haydn FleuryBlue JacketsD221996-07-08Yes221 Lbs6 ft3NoNoNo2ELCPro & Farm863,333$863,333$863,333$804,802$No863,333$
Henrik SedinBlue JacketsC371980-09-26No183 Lbs6 ft2NoNoNo2UFAPro & Farm9,000,000$9,000,000$9,000,000$8,389,831$No9,000,000$NHL Link
Jacob MarkstromBlue JacketsG281990-01-31No196 Lbs6 ft6NoNoNo2UFAPro & Farm1,600,000$1,600,000$1,600,000$1,491,525$No1,600,000$NHL Link
Jake McCabeBlue JacketsD241993-10-12No210 Lbs6 ft1NoNoNo1RFAPro & Farm1,250,000$1,250,000$1,250,000$1,165,254$NoNHL Link
Jake VirtanenBlue JacketsRW221996-08-17No229 Lbs6 ft1NoNoNo2ELCPro & Farm894,167$894,167$894,167$833,546$No894,167$NHL Link
Jason ChimeraBlue JacketsLW/RW391979-05-02No215 Lbs6 ft3NoNoNo2UFAPro & Farm2,000,000$2,000,000$2,000,000$1,864,407$No2,000,000$NHL Link
Jimmy VeseyBlue JacketsLW251993-05-26No206 Lbs6 ft3NoNoNo1RFAPro & Farm925,000$925,000$925,000$862,288$NoNHL Link
Kyle ConnorBlue JacketsLW211996-12-09No182 Lbs6 ft1NoNoNo1ELCPro & Farm925,000$925,000$925,000$862,288$NoNHL Link
Matt MurrayBlue JacketsG241994-05-25No178 Lbs6 ft4NoNoNo2RFAPro & Farm3,750,000$3,750,000$3,750,000$3,495,763$No3,750,000$NHL Link
Matt ReadBlue JacketsC/LW/RW321986-06-14No185 Lbs5 ft10NoNoNo2UFAPro & Farm4,000,000$4,000,000$4,000,000$3,728,814$No4,000,000$NHL Link
Max DomiBlue JacketsC/LW231995-03-02No195 Lbs5 ft10NoNoNo2RFAPro & Farm863,333$863,333$863,333$804,802$No863,333$NHL Link
Mikkel BoedkerBlue JacketsLW/RW281989-12-16No210 Lbs6 ft0NoNoNo1UFAPro & Farm2,800,000$2,800,000$2,800,000$2,610,169$NoNHL Link
Shane DoanBlue JacketsRW411976-10-10Yes223 Lbs6 ft1NoNoNo3UFAPro & Farm4,550,000$4,550,000$4,550,000$4,241,525$No4,550,000$4,550,000$
Tommy WingelsBlue JacketsC/RW301988-04-12No200 Lbs6 ft0NoNoNo4UFAPro & Farm2,550,000$2,550,000$2,550,000$2,377,119$No2,550,000$2,550,000$2,550,000$NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2027.75204 Lbs6 ft21.902,443,067$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
48,861,333$40,370,833$16,600,000$2,550,000$0$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Max DomiHenrik SedinMikkel Boedker40014
2Jimmy VeseyDrake CaggiulaShane Doan30014
3Brendan PerliniTommy WingelsKyle Connor20023
4Jason ChimeraMatt ReadJake Virtanen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam LarssonBrooks Orpik42122
2Brian DumoulinJake McCabe38122
3Derrick PouliotHaydn Fleury20122
4Derrick PouliotBrooks Orpik0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Max DomiHenrik SedinJason Chimera60005
2Jimmy VeseyDrake CaggiulaShane Doan40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam LarssonBrooks Orpik60023
2Brian DumoulinJake McCabe40023
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Henrik SedinMax Domi60032
2Jimmy VeseyJason Chimera40032
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam LarssonBrooks Orpik60230
2Brian DumoulinJake McCabe40230
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Henrik Sedin60050Adam LarssonBrooks Orpik60050
2Max Domi40050Brian DumoulinJake McCabe40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Henrik SedinMax Domi60023
2Jimmy VeseyJason Chimera40023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam LarssonBrooks Orpik60122
2Brian DumoulinJake McCabe40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Max DomiHenrik SedinJason ChimeraAdam LarssonBrooks Orpik
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Max DomiHenrik SedinJason ChimeraAdam LarssonBrooks Orpik
Extra Forwards
Normal PowerPlayPenalty Kill
Brendan Perlini, Henrik Sedin, Shane DoanBrendan Perlini, Max DomiShane Doan
Extra Defensemen
Normal PowerPlayPenalty Kill
Brooks Orpik, Brian Dumoulin, Haydn FleuryBrooks OrpikBrian Dumoulin, Haydn Fleury
Penalty Shots
Henrik Sedin, Max Domi, Jimmy Vesey, Jason Chimera, Brendan Perlini
Goalie
#1 : Matt Murray, #2 : Jacob Markstrom
Custom OT Lines Forwards
Henrik Sedin, Max Domi, Jimmy Vesey, Jason Chimera, Brendan Perlini, Shane Doan, Shane Doan, Drake Caggiula, Kyle Connor, Mikkel Boedker, Tommy Wingels
Custom OT Lines Defensemen
Adam Larsson, Brooks Orpik, Brian Dumoulin, Jake McCabe, Haydn Fleury


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Avalanche1000000123-11000000123-10000000000010.5002460000201719643714831400.00%40100.00%06515541.94%8619743.65%337544.00%2314288136
2Hurricanes11000000541110000005410000000000021.0005813004010271161003368283266.67%3166.67%06515541.94%8619743.65%337544.00%2315237136
3Lightning11000000202000000000001100000020221.0002460110102489701856255120.00%30100.00%06515541.94%8619743.65%337544.00%2315237137
4Panthers1010000024-2000000000001010000024-200.0002350010102565140431010203133.33%5180.00%06515541.94%8619743.65%337544.00%2316257115
5Red Wings1010000034-1000000000001010000034-100.00034700210017692036131920100.00%7185.71%06515541.94%8619743.65%337544.00%2113258136
Total522000011415-1210000017703120000078-150.5001423370181501103238394167485112416425.00%22386.36%06515541.94%8619743.65%337544.00%11375126396431
_Since Last GM Reset522000011415-1210000017703120000078-150.5001423370181501103238394167485112416425.00%22386.36%06515541.94%8619743.65%337544.00%11375126396431
_Vs Conference4220000012120110000005413120000078-140.50012193101813093312933013034439312433.33%18383.33%06515541.94%8619743.65%337544.00%906097305125
_Vs Division11000000541110000005410000000000021.0005813004010271161003368283266.67%3166.67%06515541.94%8619743.65%337544.00%2315237136

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
55W1142337110167485112401
All Games
GPWLOTWOTL SOWSOLGFGA
52200011415
Home Games
GPWLOTWOTL SOWSOLGFGA
210000177
Visitor Games
GPWLOTWOTL SOWSOLGFGA
312000078
Last 10 Games
WLOTWOTL SOWSOL
220001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
16425.00%22386.36%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
32383948150
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
6515541.94%8619743.65%337544.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11375126396431


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-049Blue Jackets3Red Wings4LBoxScore
3 - 2018-10-0515Hurricanes4Blue Jackets5WBoxScore
7 - 2018-10-0937Avalanche3Blue Jackets2LXXBoxScore
9 - 2018-10-1148Blue Jackets2Panthers4LBoxScore
10 - 2018-10-1269Blue Jackets2Lightning0WBoxScore
15 - 2018-10-1790Flyers-Blue Jackets-
17 - 2018-10-19103Blackhawks-Blue Jackets-
20 - 2018-10-22122Coyotes-Blue Jackets-
22 - 2018-10-24143Blue Jackets-Blues-
24 - 2018-10-26150Sabres-Blue Jackets-
27 - 2018-10-29171Red Wings-Blue Jackets-
29 - 2018-10-31188Blue Jackets-Sharks-
31 - 2018-11-02198Blue Jackets-Kings-
32 - 2018-11-03207Blue Jackets-Ducks-
34 - 2018-11-05215Stars-Blue Jackets-
37 - 2018-11-08241Blue Jackets-Capitals-
38 - 2018-11-09245Rangers-Blue Jackets-
40 - 2018-11-11262Blue Jackets-Stars-
43 - 2018-11-14278Panthers-Blue Jackets-
45 - 2018-11-16293Blue Jackets-Hurricanes-
47 - 2018-11-18315Blue Jackets-Maple Leafs-
50 - 2018-11-21337Maple Leafs-Blue Jackets-
51 - 2018-11-22354Blue Jackets-Penguins-
53 - 2018-11-24362Blue Jackets-Red Wings-
56 - 2018-11-27383Wild-Blue Jackets-
58 - 2018-11-29403Blue Jackets-Islanders-
61 - 2018-12-02417Flames-Blue Jackets-
63 - 2018-12-04434Blue Jackets-Flyers-
65 - 2018-12-06447Capitals-Blue Jackets-
68 - 2018-12-09468Canucks-Blue Jackets-
70 - 2018-12-11480Kings-Blue Jackets-
72 - 2018-12-13495Ducks-Blue Jackets-
74 - 2018-12-15512Golden Knights-Blue Jackets-
77 - 2018-12-18533Devils-Blue Jackets-
79 - 2018-12-20554Blue Jackets-Flyers-
80 - 2018-12-21562Blue Jackets-Devils-
81 - 2018-12-22572Blue Jackets-Rangers-
82 - 2018-12-23580Maple Leafs-Blue Jackets-
85 - 2018-12-26602Senators-Blue Jackets-
89 - 2018-12-30631Blue Jackets-Hurricanes-
90 - 2018-12-31637Blue Jackets-Panthers-
93 - 2019-01-03664Blue Jackets-Lightning-
95 - 2019-01-05672Predators-Blue Jackets-
97 - 2019-01-07698Blue Jackets-Capitals-
98 - 2019-01-08700Rangers-Blue Jackets-
100 - 2019-01-10711Devils-Blue Jackets-
103 - 2019-01-13735Canadiens-Blue Jackets-
104 - 2019-01-14744Blue Jackets-Wild-
110 - 2019-01-20774Sabres-Blue Jackets-
112 - 2019-01-22780Blue Jackets-Jets-
114 - 2019-01-24789Blues-Blue Jackets-
117 - 2019-01-27811Blue Jackets-Avalanche-
119 - 2019-01-29823Blue Jackets-Coyotes-
121 - 2019-01-31850Blue Jackets-Golden Knights-
124 - 2019-02-03865Capitals-Blue Jackets-
126 - 2019-02-05878Islanders-Blue Jackets-
128 - 2019-02-07894Blue Jackets-Blackhawks-
130 - 2019-02-09910Lightning-Blue Jackets-
131 - 2019-02-10921Blue Jackets-Canadiens-
134 - 2019-02-13943Blue Jackets-Senators-
135 - 2019-02-14946Sharks-Blue Jackets-
138 - 2019-02-17971Penguins-Blue Jackets-
140 - 2019-02-19986Flyers-Blue Jackets-
142 - 2019-02-211001Oilers-Blue Jackets-
143 - 2019-02-221010Jets-Blue Jackets-
145 - 2019-02-241024Blue Jackets-Devils-
147 - 2019-02-261041Blue Jackets-Penguins-
149 - 2019-02-281050Penguins-Blue Jackets-
Trade Deadline --- Trades can’t be done after this day is simulated!
151 - 2019-03-021069Blue Jackets-Islanders-
152 - 2019-03-031074Bruins-Blue Jackets-
155 - 2019-03-061093Hurricanes-Blue Jackets-
156 - 2019-03-071100Blue Jackets-Bruins-
159 - 2019-03-101123Blue Jackets-Flames-
161 - 2019-03-121140Blue Jackets-Oilers-
164 - 2019-03-151167Blue Jackets-Canucks-
166 - 2019-03-171179Islanders-Blue Jackets-
168 - 2019-03-191191Canadiens-Blue Jackets-
170 - 2019-03-211208Blue Jackets-Predators-
171 - 2019-03-221216Blue Jackets-Sabres-
173 - 2019-03-241231Bruins-Blue Jackets-
176 - 2019-03-271256Blue Jackets-Rangers-
177 - 2019-03-281266Blue Jackets-Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity60005000200040001000
Ticket Price100603525200
Attendance11,8459,1313,8067,6071,793
Attendance PCT98.71%91.31%95.15%95.09%89.65%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
39 17091 - 94.95% 1,508,966$3,017,931$18000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
3,485,858$ 48,861,333$ 48,861,333$ 0$ 0$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
48,861,333$ 3,418,068$ 0$ 20 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
58,849,654$ 165 281,702$ 46,480,830$

Team Total Estimate
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
46,480,830$ 48,861,333$ 25,564,312$ 37,933,136$



Depth Chart

Left WingCenterRight Wing
Max DomiAGE:23PO:84OV:68
Mikkel BoedkerAGE:28PO:70OV:67
Jimmy VeseyAGE:25PO:64OV:67
Jason ChimeraAGE:39PO:23OV:67
Brendan PerliniAGE:22PO:85OV:66
Kyle ConnorAGE:21PO:83OV:65
Drake CaggiulaAGE:24PO:43OV:65
Matt ReadAGE:32PO:27OV:64
Nail YakupovAGE:24PO:88OV:63
Sonny MilanoAGE:22PO:84OV:60
*Brendan LemieuxAGE:22PO:78OV:58
Valentin ZykovAGE:23PO:76OV:58
Nicolas KerdilesAGE:24PO:74OV:54
Vladislav KamenevAGE:22PO:74OV:54
Henrik SedinAGE:37PO:37OV:69
Max DomiAGE:23PO:84OV:68
Tommy WingelsAGE:30PO:39OV:66
Drake CaggiulaAGE:24PO:43OV:65
Matt ReadAGE:32PO:27OV:64
*Luke KuninAGE:20PO:84OV:61
*Dylan GambrellAGE:22PO:68OV:54
Mikkel BoedkerAGE:28PO:70OV:67
Jason ChimeraAGE:39PO:23OV:67
Tommy WingelsAGE:30PO:39OV:66
*Shane DoanAGE:41PO:28OV:66
Matt ReadAGE:32PO:27OV:64
Nail YakupovAGE:24PO:88OV:63
Jake VirtanenAGE:22PO:88OV:63
*Colin McDonaldAGE:33PO:39OV:60
Valentin ZykovAGE:23PO:76OV:58

Defense #1Defense #2Goalie
Adam LarssonAGE:25PO:85OV:72
Brooks OrpikAGE:37PO:35OV:72
Brian DumoulinAGE:27PO:61OV:69
Jake McCabeAGE:24PO:71OV:68
Justin FalkAGE:29PO:48OV:66
*Haydn FleuryAGE:22PO:87OV:65
Derrick PouliotAGE:24PO:85OV:63
Mark StreitAGE:40PO:17OV:62
*Alex LintuniemiAGE:22PO:45OV:61
*Philip LarsenAGE:28PO:44OV:60
Roland McKeownAGE:22PO:72OV:59
Matt MurrayAGE:24PO:63OV:85
Jacob MarkstromAGE:28PO:65OV:81
*Thatcher DemkoAGE:22PO:76OV:65

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Adam MorrisonBlue Jackets
Brett HowdenBlue Jackets826
Felix SandstromBlue Jackets
Henrik HaapelaBlue Jackets
Jack KopackaBlue Jackets859
Jared CowenBlue Jackets
Jiri TlustyBlue Jackets
Joel Eriksson-EkBlue Jackets
Joey MorminaBlue Jackets
Kevin PoulinBlue Jackets
Luke GreenBlue Jackets869
Michael TeslakBlue Jackets
Scott GomezBlue Jackets
Simon DespresBlue Jackets
Tony CamarenesiBlue Jackets
Vincent LecavalierBlue Jackets
William BittenBlue Jackets853
Willie MitchellBlue Jackets

Draft Picks

Year R1R2R3R4R5R6R7
2019NJD MIN NYR PHI CBS NJD SJS WPG ANA PHI CBS ARI WPG NJD SJS CBS NJD SJS CBS CBS PHI CBS
2020CBS TAM CBS CBS CBS CBS CBS CBS
2021CBS CBS CBS CBS CBS CBS CBS
2022CBS CBS CBS CBS CBS CBS CBS
2023CBS CBS CBS CBS CBS CBS CBS



[2018-10-05 08:05:34] - Adam Larsson has been selected as assistant for Blue Jackets.
[2018-10-05 08:05:34] - Unknown Player is no longer as assistant for Blue Jackets.
[2018-10-05 08:05:34] - Henrik Sedin has been selected as assistant for Blue Jackets.
[2018-10-05 08:05:34] - Unknown Player is no longer as assistant for Blue Jackets.
[2018-10-05 08:05:34] - Max Domi has been selected as captain for Blue Jackets.
[2018-10-05 08:05:34] - Unknown Player is no longer captain for Blue Jackets.
[2018-07-26 15:23:00] - Henrik Sedin was added to Blue Jackets.
[2018-07-16 19:52:55] - TRADE : From Blue Jackets to Lightning : Darcy Kuemper (77), Michael McLeod (P), Logan Stanley (P), Y:2019-RND:1-WPG.
[2018-07-16 19:52:55] - TRADE : From Lightning to Blue Jackets : Adam Larsson (72), Y:2019-RND:1-NYR, Y:2020-RND:2-TAM.
[2018-07-16 19:50:12] - TRADE : From Blue Jackets to Devils : Quinn Hughes (P), Y:2019-RND:1-SJS.
[2018-07-16 19:50:12] - TRADE : From Devils to Blue Jackets : Matt Murray (85).
[2018-07-15 22:28:36] - TRADE : From Lightning to Blue Jackets : Jake McCabe (68), Michael McLeod (P), Logan Stanley (P).
[2018-07-15 22:28:36] - TRADE : From Blue Jackets to Lightning : Adam Larsson (72), Y:2019-RND:1-NYR, Y:2020-RND:2-TAM.
[2018-07-14 08:18:29] - TRADE : From Blue Jackets to Lightning : Jake McCabe (68), Michael McLeod (P), Logan Stanley (P).
[2018-07-14 08:18:29] - TRADE : From Lightning to Blue Jackets : Adam Larsson (72), Y:2019-RND:1-NYR, Y:2020-RND:2-TAM.
[2018-07-10 20:56:59] - Tommy Wingels was added to Blue Jackets.
[2018-07-10 20:19:01] - Brooks Orpik was added to Blue Jackets.



[2018-10-14 09:36:22] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-13 09:31:06] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-13 09:27:08] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-12 08:22:18] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-11 08:18:07] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-11 08:14:48] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-10 08:08:16] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-09 08:26:49] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-08 09:30:14] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-07 08:08:42] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-06 08:05:57] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-05 08:05:52] Blue Jackets are expected to be under the minimum salary cap by 1 138 667 $!
[2018-10-05 08:05:34] Successfully loaded Blue Jackets lines done with STHS Client - 3.1.2.2
[2018-10-05 08:05:34] Jake Virtanen of Blue Jackets was sent to pro.
[2018-10-05 08:05:34] Justin Falk of Blue Jackets was sent down to farm.
[2018-10-05 08:05:34] Philip Larsen of Blue Jackets was sent down to farm.
[2018-10-05 08:05:34] Mark Streit of Blue Jackets was sent down to farm.
[2018-10-04 08:18:02] Blue Jackets lines for next game are empty. Current rosters/lines are not erased.
[2018-10-04 08:16:21] Auto Lines Partial Function has been run for Blue Jackets.
[2018-10-04 08:16:20] Auto Roster Partial Function has been run for Blue Jackets.
[2018-10-02 19:12:29] Tommy Wingels from Blue Jackets is back from Broken Bone (Right Foot) Injury.
[2018-10-02 19:11:23] Blue Jackets lines for next game are empty. Current rosters/lines are not erased.
[2018-10-02 19:11:22] Game 214 - Matt Read from Blue Jackets is injured (Broken Bone (Right Foot)) and is out for 1 week.
[2018-10-01 08:17:16] Mikkel Boedker from Blue Jackets is back from Bruised Right Foot Injury.
[2018-10-01 08:17:06] Blue Jackets lines for next game are empty. Current rosters/lines are not erased.
[2018-10-01 08:14:01] Auto Lines Function has been run for Blue Jackets.
[2018-10-01 08:13:59] Auto Roster Partial Function has been run for Blue Jackets.
[2018-09-30 08:24:54] Blue Jackets lines for next game are empty. Current rosters/lines are not erased.
[2018-09-30 08:24:51] Game 181 - Mikkel Boedker from Blue Jackets is injured (Bruised Right Foot) and is out for 1 week.
[2018-09-30 08:24:51] Game 181 - Tommy Wingels from Blue Jackets is injured (Broken Bone (Right Foot)) and is out for 1 week.



No Injury or Suspension.


OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201882214106473210250-4041122002241107127-204192104232103123-204221033854813476882162276674746800962438852100916403436418.66%4889281.15%7846177847.58%879199344.10%521105949.20%164385418138211529739
2018522000011415-1210000017703120000078-151423370181501103238394167485112416425.00%22386.36%06515541.94%8619743.65%337544.00%11375126396431
Total Regular Season87234306474224265-4143132002242114134-2044102304232110131-2147224361585145569871623867067848391002605900106017643596818.94%5109581.37%7911193347.13%965219044.06%554113448.85%175792919408601593770