Blues

GP: 5 | W: 3 | L: 0 | OTL: 2 | P: 8
GF: 12 | GA: 9 | PP%: 20.00% | PK%: 100.00%
GM : Patrick Resche | Morale : 75 | Team Overall : 71
Next Games #88 vs Canadiens
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Claude Giroux (C)XX100.006235858269939581888674688078826675740
2Jeff Carter (A)XX100.006737847887897977857680717782775075730
3Artem AnisimovXX100.005835837386878172857577717278735675710
4Frans NielsenX100.006435867175869270867170797084753475700
5Adam LowryX100.008738827091847769867068786969666475700
6Jake GuentzelXX100.007535837668858375667575697567656475700
7Tyler ToffoliXX100.006635857374868672567477627271696975690
8Erik HaulaXX100.006538797373858771857074707173694275690
9Loui ErikssonXX100.005735887080887169557069776982744675680
10Jussi JokinenXXX100.006038816973837867746966686785762575660
11Mike Ribeiro (R)X100.005840886870816267747661526588753175640
12Jay McClement (R)X100.006248866178696460766362696085723675630
13Alex Pietrangelo (A)X100.006235937685959276308372866675817475760
14Dustin ByfuglienXXX100.008146687698958876308569746682742975750
15Jared SpurgeonX100.006535937463958274308069856477714075730
16Trevor DaleyX100.006038856871868068306966785885773875690
17John MooreX100.007241826882848568306869685875706875680
Scratches
1Trevor van RiemsdykX35.526038836778818266307464775673683775680
TEAM AVERAGE96.39663884727886817161747072687873487570
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Henrik Lundqvist100.00909395738988908988898286902475850
2Steve Mason100.00808192887978807978797278845375790
Scratches
TEAM AVERAGE100.0085879481848385848384778287397582
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Boughner79838677767170CAN463500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alex PietrangeloBluesD5347200471531020.00%512324.632241218000012100.00%000001.1400000210
2Jared SpurgeonBluesD51452208390811.11%510320.64123517000010100.00%000000.9700000110
3Erik HaulaBluesC/LW5134000781021110.00%09218.45112417000000053.00%10000000.8701000000
4Claude GirouxBluesC/RW51231001013147137.14%011623.27000418000000056.39%13300000.5201000010
5Tyler ToffoliBluesLW/RW5213100471321215.38%010521.17011117000000237.50%800000.5711000001
6Jake GuentzelBluesC/LW512304088175105.88%010821.61011317000000037.50%800000.5601000000
7Artem AnisimovBluesC/LW502200046165140.00%111623.37011518000030071.43%700000.3401000001
8Jeff CarterBluesC/RW520216088214199.52%011623.33000518000001163.64%1100000.3401000000
9Frans NielsenBluesC5011-10027114100.00%27515.13000000000120050.00%7400000.2600000000
10Loui ErikssonBluesLW/RW5101-1000416536.25%16913.8700000000060025.00%800000.2900000000
11Trevor DaleyBluesD5011020297340.00%69619.2600031300008000.00%000000.2100000000
12John MooreBluesD5011155824010.00%37114.270000000001000.00%000000.2800010000
13Trevor van RiemsdykBluesD1011000002120.00%11515.430002200000000.00%000001.3000000000
14Jussi JokinenBluesC/LW/RW5000000000110.00%030.700000000002000.00%100000.0000000000
15Dustin ByfuglienBluesLW/RW/D5000-4751624280.00%713026.0500021700008000.00%000000.0000100000
16Jay McClementBluesC5000000100000.00%061.3400000000060033.33%300000.0000000000
17Mike RibeiroBluesC5000000100110.00%0163.3000000000000027.78%1800000.0000000000
18Adam LowryBluesLW5000-1401359560.00%17314.6500000000010000.00%200000.0000000000
19Brandon MontourRampage (STL)D4000-100111200.00%27117.860000000000000.00%000000.0000000000
Team Total or Average90122234030109790169521337.10%34151216.804812461790000833351.21%37300000.4516110332
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Henrik LundqvistBlues53020.9191.55310208990100.667650000
Team Total or Average53020.9191.55310208990100.667650000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary AverageSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam LowryBluesLW251993-03-29No210 Lbs6 ft5NoNoNo1RFAPro & Farm1,000,000$1,000,000$1,000,000$932,203$NoNHL Link
Alex PietrangeloBluesD281990-01-18No210 Lbs6 ft3NoNoNo3UFAPro & Farm7,000,000$7,000,000$7,000,000$6,525,424$No7,000,000$7,000,000$NHL Link
Artem AnisimovBluesC/LW301988-05-24No198 Lbs6 ft4NoNoNo2UFAPro & Farm4,550,000$4,550,000$4,550,000$4,241,525$No4,550,000$NHL Link
Claude GirouxBluesC/RW301988-01-12No185 Lbs5 ft11NoNoNo3UFAPro & Farm9,000,000$9,000,000$9,000,000$8,389,831$No9,000,000$9,000,000$NHL Link
Dustin ByfuglienBluesLW/RW/D331985-03-27No260 Lbs6 ft5NoNoNo1UFAPro & Farm5,750,000$500,000$5,750,000$5,360,169$NoNHL Link
Erik HaulaBluesC/LW271991-03-23No193 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$950,000$950,000$885,593$No950,000$NHL Link
Frans NielsenBluesC341984-04-24No188 Lbs6 ft1NoNoNo2UFAPro & Farm3,500,000$500,000$3,500,000$3,262,712$No3,500,000$NHL Link
Henrik LundqvistBluesG361982-03-02No180 Lbs6 ft1NoNoNo2UFAPro & Farm6,000,000$8,000,000$6,000,000$5,593,220$No10,000,000$NHL Link
Jake GuentzelBluesC/LW231994-10-06No180 Lbs5 ft11NoNoNo2RFAPro & Farm734,167$734,167$734,167$684,393$No734,167$NHL Link
Jared SpurgeonBluesD281989-11-29No168 Lbs5 ft9NoNoNo2UFAPro & Farm3,600,000$500,000$3,600,000$3,355,932$No3,600,000$NHL Link
Jay McClementBluesC351983-03-02Yes205 Lbs6 ft1NoNoNo2UFAPro & Farm1,300,000$1,300,000$1,300,000$1,211,864$No1,300,000$
Jeff CarterBluesC/RW331985-01-01No217 Lbs6 ft3NoNoNo1UFAPro & Farm6,750,000$6,750,000$6,750,000$6,292,373$NoNHL Link
John MooreBluesD271990-11-19No210 Lbs6 ft2NoNoNo1RFAPro & Farm1,300,000$500,000$1,300,000$1,211,864$NoNHL Link
Jussi JokinenBluesC/LW/RW351983-04-01No191 Lbs6 ft0NoNoNo4UFAPro & Farm950,000$950,000$950,000$885,593$No950,000$950,000$950,000$NHL Link
Loui ErikssonBluesLW/RW331985-07-17No196 Lbs6 ft2NoNoNo2UFAPro & Farm8,000,000$8,000,000$8,000,000$7,457,627$No8,000,000$NHL Link
Mike RibeiroBluesC381980-02-10Yes179 Lbs6 ft0NoNoNo1UFAPro & Farm1,500,000$1,500,000$1,500,000$1,398,305$No
Steve MasonBluesG301988-05-29No210 Lbs6 ft4NoNoNo5UFAPro & Farm4,100,000$4,100,000$4,100,000$3,822,034$No4,100,000$4,100,000$4,100,000$4,100,000$NHL Link
Trevor DaleyBluesD341983-10-09No195 Lbs5 ft11NoNoNo4UFAPro & Farm3,166,667$3,166,667$3,166,667$2,951,978$No3,166,667$3,166,667$3,166,667$NHL Link
Trevor van Riemsdyk (Out of Payroll)BluesD271991-07-24No188 Lbs6 ft2NoNoNo1RFAPro & Farm825,000$825,000$825,000$769,068$NoNHL Link
Tyler ToffoliBluesLW/RW261992-04-24No197 Lbs6 ft0NoNoNo3RFAPro & Farm3,900,000$3,900,000$3,900,000$3,635,593$No3,900,000$3,900,000$NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2030.60198 Lbs6 ft12.203,693,792$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
73,875,834$60,750,834$28,116,667$8,216,667$4,100,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Artem AnisimovClaude GirouxJeff Carter40023
2Jake GuentzelErik HaulaTyler Toffoli30023
3Adam LowryFrans NielsenLoui Eriksson20032
4Jake GuentzelMike RibeiroTyler Toffoli10023
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dustin Byfuglien40023
2Alex PietrangeloJared Spurgeon30023
3Trevor DaleyJohn Moore20032
4Alex PietrangeloDustin Byfuglien10014
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Artem AnisimovClaude GirouxJeff Carter60005
2Jake GuentzelErik HaulaTyler Toffoli40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dustin Byfuglien60005
2Alex PietrangeloJared Spurgeon40005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Frans NielsenAdam Lowry60041
2Jay McClementLoui Eriksson40041
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Alex PietrangeloJared Spurgeon60041
2Trevor Daley40041
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Frans Nielsen60041Alex PietrangeloJared Spurgeon60041
2Adam Lowry40041Trevor Daley40041
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Claude GirouxJeff Carter60014
2Artem AnisimovJake Guentzel40014
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Alex PietrangeloDustin Byfuglien60032
2Trevor DaleyJared Spurgeon40032
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jake GuentzelClaude GirouxJeff CarterAlex PietrangeloDustin Byfuglien
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Adam LowryFrans NielsenLoui ErikssonAlex PietrangeloDustin Byfuglien
Extra Forwards
Normal PowerPlayPenalty Kill
Claude Giroux, Jeff Carter, Jake GuentzelMike Ribeiro, Claude GirouxAdam Lowry
Extra Defensemen
Normal PowerPlayPenalty Kill
Dustin Byfuglien, Alex Pietrangelo, Jared SpurgeonDustin ByfuglienDustin Byfuglien,
Penalty Shots
Jake Guentzel, Claude Giroux, Jeff Carter, Artem Anisimov, Tyler Toffoli
Goalie
#1 : Henrik Lundqvist, #2 : Steve Mason
Custom OT Lines Forwards
Claude Giroux, Jeff Carter, Erik Haula, Jake Guentzel, Artem Anisimov, Tyler Toffoli, Tyler Toffoli, Mike Ribeiro, Loui Eriksson, Frans Nielsen, Adam Lowry
Custom OT Lines Defensemen
Alex Pietrangelo, Dustin Byfuglien, Trevor Daley, , John Moore


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Blackhawks210000015501000000123-11100000032130.750581300212173182628748159387114.29%20100.00%08716951.48%6812952.71%366952.17%584340122513
2Ducks11000000413110000004130000000000021.0004812000130236314016713164250.00%40100.00%08716951.48%6812952.71%366952.17%2315237137
3Flames1000010001-11000010001-10000000000010.50000000000024512611361018300.00%50100.00%08716951.48%6812952.71%366952.17%2618237136
4Jets10001000321100010003210000000000021.0003690002014914181432260256116.67%000.00%08716951.48%6812952.71%366952.17%3123176127
Total520011011293410011019721100000032180.800122234002452169435962119934329720420.00%110100.00%08716951.48%6812952.71%366952.17%140102105346534
_Since Last GM Reset520011011293410011019721100000032180.800122234002452169435962119934329720420.00%110100.00%08716951.48%6812952.71%366952.17%140102105346534
_Vs Conference520011011293410011019721100000032180.800122234002452169435962119934329720420.00%110100.00%08716951.48%6812952.71%366952.17%140102105346534
_Vs Division31001001871200010015501100000032150.8338142200232212232444210702196313215.38%20100.00%08716951.48%6812952.71%366952.17%896758193821

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
58W21222341699934329700
All Games
GPWLOTWOTL SOWSOLGFGA
5201101129
Home Games
GPWLOTWOTL SOWSOLGFGA
410110197
Visitor Games
GPWLOTWOTL SOWSOLGFGA
110000032
Last 10 Games
WLOTWOTL SOWSOL
300101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
20420.00%110100.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
435962112452
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
8716951.48%6812952.71%366952.17%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
140102105346534


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0413Jets2Blues3WXBoxScore
4 - 2018-10-0626Blackhawks3Blues2LXXBoxScore
9 - 2018-10-1155Flames1Blues0LXBoxScore
10 - 2018-10-1259Blues3Blackhawks2WBoxScore
11 - 2018-10-1372Ducks1Blues4WBoxScore
14 - 2018-10-1688Blues-Canadiens-
17 - 2018-10-19111Blues-Maple Leafs-
19 - 2018-10-21121Blues-Jets-
22 - 2018-10-24143Blue Jackets-Blues-
24 - 2018-10-26156Blackhawks-Blues-
29 - 2018-10-31189Golden Knights-Blues-
31 - 2018-11-02204Wild-Blues-
34 - 2018-11-05221Hurricanes-Blues-
37 - 2018-11-08238Sharks-Blues-
39 - 2018-11-10257Wild-Blues-
42 - 2018-11-13273Blues-Blackhawks-
44 - 2018-11-15290Blues-Golden Knights-
45 - 2018-11-16301Blues-Sharks-
47 - 2018-11-18314Kings-Blues-
49 - 2018-11-20327Blues-Predators-
50 - 2018-11-21343Predators-Blues-
51 - 2018-11-22355Jets-Blues-
55 - 2018-11-26379Blues-Red Wings-
57 - 2018-11-28392Blues-Avalanche-
58 - 2018-11-29395Blues-Coyotes-
62 - 2018-12-03428Oilers-Blues-
64 - 2018-12-05443Blues-Jets-
66 - 2018-12-07458Canucks-Blues-
68 - 2018-12-09472Panthers-Blues-
71 - 2018-12-12494Avalanche-Blues-
73 - 2018-12-14509Flames-Blues-
75 - 2018-12-16521Blues-Oilers-
77 - 2018-12-18540Blues-Canucks-
79 - 2018-12-20549Blues-Flames-
81 - 2018-12-22575Sabres-Blues-
83 - 2018-12-24594Penguins-Blues-
85 - 2018-12-26610Rangers-Blues-
88 - 2018-12-29627Capitals-Blues-
90 - 2018-12-31643Islanders-Blues-
92 - 2019-01-02654Blues-Flyers-
93 - 2019-01-03663Stars-Blues-
95 - 2019-01-05679Canadiens-Blues-
97 - 2019-01-07689Blues-Stars-
99 - 2019-01-09710Blues-Capitals-
100 - 2019-01-10717Blues-Islanders-
102 - 2019-01-12726Blues-Bruins-
104 - 2019-01-14748Senators-Blues-
106 - 2019-01-16758Blues-Kings-
108 - 2019-01-18765Blues-Ducks-
114 - 2019-01-24789Blues-Blue Jackets-
117 - 2019-01-27813Blues-Panthers-
119 - 2019-01-29835Blues-Lightning-
121 - 2019-01-31847Predators-Blues-
122 - 2019-02-01857Blues-Predators-
124 - 2019-02-03871Devils-Blues-
126 - 2019-02-05877Blues-Coyotes-
128 - 2019-02-07895Blues-Avalanche-
129 - 2019-02-08907Blues-Wild-
131 - 2019-02-10924Maple Leafs-Blues-
133 - 2019-02-12929Blues-Stars-
135 - 2019-02-14953Bruins-Blues-
136 - 2019-02-15959Blues-Wild-
138 - 2019-02-17975Predators-Blues-
141 - 2019-02-20993Blues-Hurricanes-
142 - 2019-02-211006Stars-Blues-
146 - 2019-02-251029Blues-Ducks-
147 - 2019-02-261039Blues-Kings-
149 - 2019-02-281057Blues-Sharks-
Trade Deadline --- Trades can’t be done after this day is simulated!
152 - 2019-03-031078Coyotes-Blues-
154 - 2019-03-051089Blues-Senators-
156 - 2019-03-071107Blues-Penguins-
157 - 2019-03-081112Blues-Sabres-
159 - 2019-03-101131Oilers-Blues-
161 - 2019-03-121146Red Wings-Blues-
163 - 2019-03-141159Lightning-Blues-
165 - 2019-03-161174Golden Knights-Blues-
169 - 2019-03-201200Blues-Rangers-
170 - 2019-03-211207Blues-Devils-
172 - 2019-03-231227Avalanche-Blues-
174 - 2019-03-251240Blues-Blackhawks-
175 - 2019-03-261250Flyers-Blues-
177 - 2019-03-281270Canucks-Blues-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity60005000200040001000
Ticket Price200195190185300
Attendance9,9718,0003,2006,4002,165
Attendance PCT41.55%40.00%40.00%40.00%54.13%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
37 7434 - 41.30% 1,873,656$7,494,625$18000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
4,996,379$ 73,050,834$ 62,900,834$ 0$ -4,000,000$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
73,050,834$ 4,962,491$ 0$ 19 1

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
69,325,281$ 165 415,541$ 68,564,265$

Team Total Estimate
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
68,564,265$ 69,050,834$ 34,347,218$ 35,108,234$



Depth Chart

Left WingCenterRight Wing
Dustin ByfuglienAGE:33PO:29OV:75
Artem AnisimovAGE:30PO:56OV:71
Adam LowryAGE:25PO:64OV:70
Jake GuentzelAGE:23PO:64OV:70
Tyler ToffoliAGE:26PO:69OV:69
Erik HaulaAGE:27PO:42OV:69
Loui ErikssonAGE:33PO:46OV:68
Jussi JokinenAGE:35PO:25OV:66
*Teddy PurcellAGE:33PO:26OV:57
Anthony PelusoAGE:29PO:40OV:55
Claude GirouxAGE:30PO:66OV:74
Jeff CarterAGE:33PO:50OV:73
Artem AnisimovAGE:30PO:56OV:71
Jake GuentzelAGE:23PO:64OV:70
Frans NielsenAGE:34PO:34OV:70
Erik HaulaAGE:27PO:42OV:69
Jussi JokinenAGE:35PO:25OV:66
*Mike RibeiroAGE:38PO:31OV:64
*Jay McClementAGE:35PO:36OV:63
*Anthony RichardAGE:21PO:45OV:58
*Ryan MacInnisAGE:22PO:74OV:56
*Christoph BertschyAGE:24PO:48OV:54
Dustin ByfuglienAGE:33PO:29OV:75
Claude GirouxAGE:30PO:66OV:74
Jeff CarterAGE:33PO:50OV:73
Tyler ToffoliAGE:26PO:69OV:69
Loui ErikssonAGE:33PO:46OV:68
Jussi JokinenAGE:35PO:25OV:66
Adam CracknellAGE:33PO:29OV:62
Anthony PelusoAGE:29PO:40OV:55

Defense #1Defense #2Goalie
Alex PietrangeloAGE:28PO:74OV:76
Dustin ByfuglienAGE:33PO:29OV:75
Jared SpurgeonAGE:28PO:40OV:73
Trevor DaleyAGE:34PO:38OV:69
John MooreAGE:27PO:68OV:68
Trevor van RiemsdykAGE:27PO:37OV:68
Brandon MontourAGE:24PO:68OV:66
Mark BarberioAGE:28PO:41OV:66
*Matt TaorminaAGE:31PO:28OV:62
*Connor HobbsAGE:21PO:70OV:58
*Maxime LajoieAGE:20PO:45OV:58
*Joe HickettsAGE:22PO:44OV:58
*Calle RosenAGE:24PO:43OV:56
Henrik LundqvistAGE:36PO:24OV:85
Steve MasonAGE:30PO:53OV:79
Andrew HammondAGE:30PO:35OV:64

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Aleski HeponiemiBlues
Anthony FlorentinoBlues
Brad BoyesBlues
Brad MorrisonBlues
Brogan O'BrienBlues8167
Carsen TwarynskiBlues8107
Daniel KrejciBlues
Daniil MiromanovBlues8197
Dante FabbroBlues817
David CottonBlues
Griffin LuceBlues8137
Jaret Anderson-DolanBlues
Jason SalvaggioBlues
Jean-Christophe BeaudinBlues
Joseph GarreffaBlues
Kyle CopobiancoBlues
Lucas MichaudBlues
Maksim ZhukovBlues
Mark CundariBlues
Mason ShawBlues
Maxim ShalunovBlues
Peter QuennevilleBlues
Phil McRaeBlues
Ryan KuffnerBlues2018119
Ryan LarkinBlues
Thomas GregoireBlues
Tyson StrachanBlues

Draft Picks

Year R1R2R3R4R5R6R7
2019STL STL STL ANA ANA ANA STL STL
2020STL STL STL STL STL STL STL
2021STL STL STL STL STL STL STL
2022STL STL STL STL STL STL STL
2023STL STL STL STL STL STL STL



[2018-09-22 08:08:02] - TRADE : From Flyers to Blues : Tyler Toffoli (68), Trevor van Riemsdyk (68), Artem Anisimov (70).
[2018-09-22 08:08:02] - TRADE : From Blues to Flyers : T.J. Oshie (73), Ian Cole (72), Brandon Dubinsky (70).
[2018-08-17 20:00:41] - TRADE : From Blues to Rangers : Lawson Crouse (63).
[2018-08-17 20:00:41] - TRADE : From Rangers to Blues : Henrik Lundqvist (85), 4 000 000 $ (Salary Cap).
[2018-08-17 20:00:00] - TRADE : From Blues to Rangers : Henrik Lundqvist (85).
[2018-08-17 20:00:00] - TRADE : From Rangers to Blues : Lawson Crouse (63).
[2018-08-16 20:32:00] - TRADE : From Blues to Rangers : Tristan Jarry (68), Lawson Crouse (63), Y:2019-RND:2-STL.
[2018-08-16 20:32:00] - TRADE : From Rangers to Blues : Henrik Lundqvist (85), Frans Nielsen (70), Mark Barberio (66).
[2018-08-11 20:52:35] - Rampage hired Trent Cull for 350 000 $ for 3 year(s).
[2018-08-11 20:52:20] - Rampage fired Todd Richards.
[2018-08-11 20:52:06] - Blues hired Bob Boughner for 500 000 $ for 3 year(s).
[2018-07-24 20:07:03] - Teddy Purcell was added to Blues.
[2018-07-17 21:47:03] - Jussi Jokinen was added to Blues.
[2018-07-17 21:35:35] - Matt Beleskey was released.
[2018-07-17 21:35:35] - Blues paid 0 $ to release Matt Beleskey.
[2018-05-31 13:39:01] - TRADE : From Ducks to Blues : Y:2019-RND:4-ANA, Y:2019-RND:6-ANA.
[2018-05-31 13:39:01] - TRADE : From Blues to Ducks : Y:2018-RND:6-STL.



[2018-10-13 09:27:03] Brandon Montour of Blues was sent to farm.
[2018-10-13 09:26:52] Auto Lines Partial Function has been run for Blues.
[2018-10-13 09:26:52] Auto Roster Partial Function has been run for Blues.
[2018-10-13 09:26:52] Brandon Montour of Blues was sent to pro.
[2018-10-12 08:22:15] Brandon Montour of Blues was sent to farm.
[2018-10-12 08:09:55] Auto Lines Partial Function has been run for Blues.
[2018-10-12 08:09:55] Auto Roster Partial Function has been run for Blues.
[2018-10-12 08:09:55] Brandon Montour of Blues was sent to pro.
[2018-10-11 08:14:43] Brandon Montour of Blues was sent to farm.
[2018-10-11 08:14:29] Auto Lines Partial Function has been run for Blues.
[2018-10-11 08:14:29] Auto Roster Partial Function has been run for Blues.
[2018-10-11 08:14:29] Brandon Montour of Blues was sent to pro.
[2018-10-06 08:05:52] Brandon Montour of Blues was sent to farm.
[2018-10-06 08:05:32] Auto Lines Partial Function has been run for Blues.
[2018-10-06 08:05:32] Auto Roster Partial Function has been run for Blues.
[2018-10-06 08:05:32] Brandon Montour of Blues was sent to pro.
[2018-10-04 08:25:13] (9 000 000 $) was added to Blues bank account.
[2018-10-04 08:23:27] Blues roster errors : Not enough Players available in Pro Team! 17 Dressed. 18 Required. Some errors will be automatically fixed.
[2018-10-04 08:18:01] Game 13 - Trevor van Riemsdyk from Blues is injured (Separated Left Shoulder) and is out for 2 months.
[2018-10-04 08:15:11] Successfully loaded Blues lines done with STHS Client - 3.1.5.5
[2018-10-04 08:15:11] Brandon Montour of Blues was sent down to farm.
[2018-10-02 19:11:23] Brandon Montour from Blues is back from Separated Left Shoulder Injury.
[2018-10-02 08:26:27] Successfully loaded Blues lines done with STHS Client - 3.1.5.5
[2018-09-30 08:25:05] Jared Spurgeon from Blues is back from Left Hip Injury.



No Injury or Suspension.


OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201882421908724251199524123604521117813641191304203134118168425141566666401188315242170989078859235974669116433789124.07%3246280.86%41103186059.30%1010182155.46%609106956.97%174294516907891542786
201852001101129341001101972110000003218122234002452169435962119934329720420.00%110100.00%08716951.48%6812952.71%366952.17%140102105346534
Total Regular Season87441909825263208554524605622126883842201304203137120179226343770066421228817259075294985070245878072317403989523.87%3356281.49%41190202958.65%1078195055.28%645113856.68%1883104717968231607821
Playoff
2018126600000322846330000014113633000001817112325385024151304361271371225040912992279641218.75%371170.27%022237459.36%19833459.28%10817661.36%309179275123242126
Total Playoff126600000322846330000014113633000001817112325385024151304361271371225040912992279641218.75%371170.27%022237459.36%19833459.28%10817661.36%309179275123242126