Red Wings

GP: 6 | W: 3 | L: 3 | OTL: 0 | P: 6
GF: 16 | GA: 15 | PP%: 21.74% | PK%: 90.32%
GM : Marc Pelletier | Morale : 75 | Team Overall : 68
Next Games #103 vs Flames

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jakob SilfverbergXX97.005939857678828673567174807277736175700
2Michael GrabnerXX97.006637898075775473546674837180735275700
3Ryan DzingelXX97.006344827772829176597378637573724375700
4Tanner PearsonX100.008143857378769372566871646973686675690
5Dylan StromeX100.005337867483819273797772637463658975680
6Kyle OkposoX100.007345787278848370627169637279736875680
7Leo KomarovXXX100.009240806574769563716664826380733075680
8Anthony DuclairXX100.005937887671738774526772687367696375680
9Andrew CoppX100.007435916579718264766863846469675975670
10Marcus FolignoXX100.008967696489719563566562746375685175660
11Austin WatsonXXX100.009065596587725964566268836673687175660
12Matt MoulsonX100.006438856478939163696262616386764975650
13Zach BogosianX97.007964686489877863307256804977697275660
14Jakob ChychrunX97.008040816882866667307465625661638475660
15Thomas HickeyX100.007344786471766363307458815378707175650
16Jonathan EricssonX100.008347745990836558306357745285762675640
Scratches
1Mikhail SergachevX98.007839817386838872307768625861638675690
2Braydon CoburnX100.007740796394818762307456744984744675670
3Marco Scandella (A)X100.007239816585837663307164775277705775670
TEAM AVERAGE99.11744480698180816750706673637570607567
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Keith Kinkaid100.00868785828584868584868578843975710
2Petr Mrazek100.00878684758685878685878673774775710
Scratches
1Juuse Saros100.00858179688483858483858467716275690
TEAM AVERAGE100.0086858375858486858486857377497570
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mike Babcock64729379939399CAN5511,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jakob SilfverbergRed WingsLW/RW6066-220620224170.00%214023.500333180001250037.14%7000000.8500000001
2Dylan StromeRed WingsC6145-32037911111.11%010818.05022219000041046.38%13800000.9200000010
3Austin WatsonRed WingsC/LW/RW6235420916102820.00%37512.6600000000000052.27%8800001.3200000100
4Ryan DzingelRed WingsLW/RW6325-1952213184916.67%013222.121122210001260025.00%1200000.7500001001
5Tanner PearsonRed WingsLW613442049142147.14%09716.21000030003161071.43%700000.8200000010
6Michael GrabnerRed WingsLW/RW63140002202071315.00%011819.681124170000171032.00%2500000.6800000000
7Marco ScandellaRed WingsD6123-1006751420.00%613522.6500027000028000.00%000100.4400000000
8Anthony DuclairRed WingsLW/RW612300015101410.00%16811.4000000000040025.00%400000.8800000001
9Braydon CoburnRed WingsD6202-4409681325.00%512921.58202619000020000.00%000000.3100000000
10Leo KomarovRed WingsC/LW/RW6022-2602113133100.00%29215.40011620000040051.61%12400000.4300000000
11Jakob ChychrunRed WingsD6112-3807242225.00%712821.47101218000022000.00%000000.3100000000
12Marcus FolignoRed WingsLW/RW61010006141225.00%0386.4200000000060040.00%500000.5200000000
13Zach BogosianRed WingsD60112180877320.00%310417.47011413000011000.00%000000.1900000000
14Thomas HickeyRed WingsD6011340411210.00%38213.680001300005000.00%000000.2400000000
15Andrew CoppRed WingsC6011020243010.00%0376.2400000000050052.94%3400000.5300000000
16Jonathan EricssonRed WingsD1000000200000.00%01414.480000000003000.00%000000.0000000000
17Kyle OkposoRed WingsRW6000-3404211170.00%08614.34000218000000066.67%300000.0000000000
18Matt MoulsonRed WingsLW6000000110110.00%0244.09000000000200100.00%100000.0000000000
19Mikhail SergachevRed WingsD5000180988290.00%412324.65000417000018000.00%000000.0000000000
Team Total or Average108162945-5715126142167381189.58%36173916.1159143820000052223046.97%51100100.5200001123
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Petr MrazekRed Wings32100.9061.97152015530000.000031100
2Keith KinkaidRed Wings41200.9122.9020701101130000.000033100
Team Total or Average73300.9102.5036002151660000.000064200


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Andrew CoppRed WingsC251994-07-08No206 Lbs6 ft1NoNoNo4RFAPro & Farm2,500,000$2,500,000$2,311,828$NoLink / NHL Link
Anthony DuclairRed WingsLW/RW241995-08-26No191 Lbs5 ft11NoNoNo2RFAPro & Farm650,000$650,000$601,075$NoLink / NHL Link
Austin WatsonRed WingsC/LW/RW271992-01-13No204 Lbs6 ft4NoNoNo3RFAPro & Farm3,800,000$3,800,000$3,513,978$NoLink / NHL Link
Braydon CoburnRed WingsD341985-02-27No223 Lbs6 ft5NoNoNo1UFAPro & Farm6,000,000$6,000,000$5,548,387$NoLink / NHL Link
Dylan StromeRed WingsC221997-03-07No200 Lbs6 ft3NoNoNo1ELCPro & Farm863,333$863,333$798,351$NoLink / NHL Link
Jakob ChychrunRed WingsD211998-03-31No210 Lbs6 ft2NoNoNo2ELCPro & Farm925,000$925,000$855,376$NoLink / NHL Link
Jakob SilfverbergRed WingsLW/RW281990-10-13No204 Lbs6 ft1NoNoNo3UFAPro & Farm3,750,000$3,750,000$3,467,742$NoLink / NHL Link
Jonathan EricssonRed WingsD351984-03-02No220 Lbs6 ft4NoNoNo1UFAPro & Farm4,250,000$4,250,000$3,930,108$NoLink / NHL Link
Juuse SarosRed WingsG241995-04-19No180 Lbs5 ft11NoNoNo2RFAPro & Farm1,500,000$1,500,000$1,387,097$NoLink / NHL Link
Keith KinkaidRed WingsG301989-07-04No195 Lbs6 ft3NoNoNo3UFAPro & Farm4,500,000$4,500,000$4,161,290$NoLink / NHL Link
Kyle OkposoRed WingsRW311988-04-16No219 Lbs6 ft0NoNoNo4UFAPro & Farm6,000,000$6,000,000$5,548,387$NoLink / NHL Link
Leo KomarovRed WingsC/LW/RW321987-01-23No209 Lbs5 ft11NoNoNo2UFAPro & Farm2,950,000$2,950,000$2,727,957$NoLink / NHL Link
Marco ScandellaRed WingsD291990-02-23No210 Lbs6 ft3NoNoNo2UFAPro & Farm3,750,000$3,750,000$3,467,742$NoLink / NHL Link
Marcus FolignoRed WingsLW/RW281991-08-10No228 Lbs6 ft3NoNoNo3UFAPro & Farm2,800,000$2,800,000$2,589,247$NoLink / NHL Link
Matt MoulsonRed WingsLW351983-11-01No203 Lbs6 ft1NoNoNo2UFAPro & Farm1,000,000$1,000,000$924,731$NoLink / NHL Link
Michael GrabnerRed WingsLW/RW311987-10-05No188 Lbs6 ft1NoNoNo3UFAPro & Farm3,350,000$3,350,000$3,097,849$NoLink / NHL Link
Mikhail SergachevRed WingsD211998-06-25No215 Lbs6 ft3NoNoNo1ELCPro & Farm894,166$894,166$826,863$NoLink / NHL Link
Petr MrazekRed WingsG271992-02-14No190 Lbs6 ft1NoNoNo2RFAPro & Farm4,000,000$4,000,000$3,698,925$NoLink / NHL Link
Ryan DzingelRed WingsLW/RW271992-03-09No190 Lbs6 ft0NoNoNo1RFAPro & Farm1,800,000$1,800,000$1,664,516$NoLink / NHL Link
Tanner PearsonRed WingsLW271992-08-10No201 Lbs6 ft1NoNoNo1RFAPro & Farm1,250,000$1,250,000$1,155,914$NoLink / NHL Link
Thomas HickeyRed WingsD301989-02-08No183 Lbs6 ft0NoNoNo3UFAPro & Farm2,200,000$2,200,000$2,034,409$NoLink / NHL Link
Zach BogosianRed WingsD291990-07-15No226 Lbs6 ft3NoNoNo1UFAPro & Farm5,142,857$5,142,857$4,755,760$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2228.05204 Lbs6 ft22.142,903,425$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
63,875,356$43,675,000$28,900,000$8,500,000$0$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakob SilfverbergDylan StromeRyan Dzingel40122
2Michael GrabnerLeo KomarovKyle Okposo30122
3Tanner PearsonAustin WatsonAnthony Duclair20122
4Marcus FolignoAndrew CoppJakob Silfverberg10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Jakob ChychrunZach Bogosian30122
3Thomas HickeyJonathan Ericsson20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakob SilfverbergDylan StromeRyan Dzingel60122
2Michael GrabnerLeo KomarovKyle Okposo40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Jakob ChychrunZach Bogosian40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jakob SilfverbergRyan Dzingel60122
2Michael GrabnerTanner Pearson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Jakob ChychrunZach Bogosian40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jakob Silfverberg6012260122
2Ryan Dzingel40122Jakob ChychrunZach Bogosian40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jakob SilfverbergRyan Dzingel60122
2Michael GrabnerTanner Pearson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Jakob ChychrunZach Bogosian40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jakob SilfverbergDylan StromeRyan Dzingel
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jakob SilfverbergDylan StromeRyan Dzingel
Extra Forwards
Normal PowerPlayPenalty Kill
Matt Moulson, Anthony Duclair, Andrew CoppMatt Moulson, Anthony DuclairAndrew Copp
Extra Defensemen
Normal PowerPlayPenalty Kill
Thomas Hickey, Jonathan Ericsson, Jakob ChychrunThomas HickeyJonathan Ericsson, Jakob Chychrun
Penalty Shots
Jakob Silfverberg, Ryan Dzingel, Michael Grabner, Tanner Pearson, Dylan Strome
Goalie
#1 : Petr Mrazek, #2 : Keith Kinkaid
Custom OT Lines Forwards
Jakob Silfverberg, Ryan Dzingel, Michael Grabner, Tanner Pearson, Dylan Strome, Leo Komarov, Leo Komarov, Kyle Okposo, Anthony Duclair, Andrew Copp, Marcus Foligno
Custom OT Lines Defensemen
, , Jakob Chychrun, Zach Bogosian, Thomas Hickey


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
66W2162945167166367112602
All Games
GPWLOTWOTL SOWSOLGFGA
63300001615
Home Games
GPWLOTWOTL SOWSOLGFGA
321000074
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3120000911
Last 10 Games
WLOTWOTL SOWSOL
330000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
23521.74%31390.32%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
57496104570
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
10721150.71%9221043.81%419045.56%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
13892144457738


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2019-10-0525Red Wings4Predators6LBoxScore
5 - 2019-10-0632Stars0Red Wings2WBoxScore
7 - 2019-10-0840Ducks4Red Wings2LBoxScore
9 - 2019-10-1048Red Wings1Canadiens4LBoxScore
11 - 2019-10-1267Maple Leafs0Red Wings3WBoxScore
14 - 2019-10-1589Red Wings4Canucks1WBoxScore
16 - 2019-10-17103Red Wings-Flames-
17 - 2019-10-18111Red Wings-Oilers-
21 - 2019-10-22137Canucks-Red Wings-
22 - 2019-10-23143Red Wings-Senators-
24 - 2019-10-25159Sabres-Red Wings-
26 - 2019-10-27171Blues-Red Wings-
28 - 2019-10-29184Oilers-Red Wings-
31 - 2019-11-01199Red Wings-Hurricanes-
32 - 2019-11-02209Red Wings-Panthers-
34 - 2019-11-04222Predators-Red Wings-
36 - 2019-11-06235Red Wings-Rangers-
38 - 2019-11-08249Bruins-Red Wings-
40 - 2019-11-10266Golden Knights-Red Wings-
42 - 2019-11-12278Red Wings-Ducks-
44 - 2019-11-14293Red Wings-Kings-
46 - 2019-11-16313Red Wings-Sharks-
49 - 2019-11-19323Senators-Red Wings-
51 - 2019-11-21337Red Wings-Blue Jackets-
53 - 2019-11-23356Red Wings-Devils-
54 - 2019-11-24363Hurricanes-Red Wings-
57 - 2019-11-27379Maple Leafs-Red Wings-
59 - 2019-11-29397Red Wings-Flyers-
60 - 2019-11-30407Capitals-Red Wings-
62 - 2019-12-02421Islanders-Red Wings-
67 - 2019-12-07456Penguins-Red Wings-
70 - 2019-12-10477Red Wings-Jets-
72 - 2019-12-12491Jets-Red Wings-
74 - 2019-12-14508Red Wings-Canadiens-
75 - 2019-12-15517Kings-Red Wings-
77 - 2019-12-17529Blue Jackets-Red Wings-
81 - 2019-12-21557Red Wings-Maple Leafs-
82 - 2019-12-22567Coyotes-Red Wings-
88 - 2019-12-28596Red Wings-Panthers-
89 - 2019-12-29607Red Wings-Lightning-
91 - 2019-12-31620Sharks-Red Wings-
94 - 2020-01-03640Red Wings-Stars-
96 - 2020-01-05657Red Wings-Blackhawks-
98 - 2020-01-07669Canadiens-Red Wings-
101 - 2020-01-10689Senators-Red Wings-
103 - 2020-01-12705Sabres-Red Wings-
105 - 2020-01-14717Red Wings-Islanders-
108 - 2020-01-17740Penguins-Red Wings-
109 - 2020-01-18749Panthers-Red Wings-
111 - 2020-01-20759Red Wings-Avalanche-
113 - 2020-01-22767Red Wings-Wild-
122 - 2020-01-31785Red Wings-Rangers-
123 - 2020-02-01797Rangers-Red Wings-
125 - 2020-02-03811Flyers-Red Wings-
128 - 2020-02-06827Red Wings-Sabres-
129 - 2020-02-07841Red Wings-Blue Jackets-
131 - 2020-02-09855Bruins-Red Wings-
133 - 2020-02-11866Red Wings-Sabres-
135 - 2020-02-13884Red Wings-Devils-
137 - 2020-02-15895Red Wings-Bruins-
138 - 2020-02-16906Red Wings-Penguins-
140 - 2020-02-18923Canadiens-Red Wings-
143 - 2020-02-21941Red Wings-Islanders-
145 - 2020-02-23963Flames-Red Wings-
147 - 2020-02-25975Devils-Red Wings-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-02-27989Wild-Red Wings-
151 - 2020-02-291005Red Wings-Senators-
153 - 2020-03-021017Avalanche-Red Wings-
157 - 2020-03-061044Blackhawks-Red Wings-
159 - 2020-03-081060Lightning-Red Wings-
161 - 2020-03-101074Hurricanes-Red Wings-
163 - 2020-03-121087Red Wings-Capitals-
165 - 2020-03-141100Red Wings-Lightning-
167 - 2020-03-161121Panthers-Red Wings-
171 - 2020-03-201152Red Wings-Coyotes-
172 - 2020-03-211160Red Wings-Golden Knights-
175 - 2020-03-241176Red Wings-Bruins-
177 - 2020-03-261196Flyers-Red Wings-
179 - 2020-03-281210Capitals-Red Wings-
182 - 2020-03-311233Red Wings-Blues-
184 - 2020-04-021242Red Wings-Maple Leafs-
186 - 2020-04-041264Lightning-Red Wings-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity60005000200040001000
Ticket Price80503020175
Attendance18,00014,2286,00010,2802,963
Attendance PCT100.00%94.85%100.00%85.67%98.77%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
38 17157 - 95.32% 1,273,135$3,819,406$18000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
4,883,088$ 63,875,356$ 63,125,356$ 0$ 0$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
63,875,356$ 4,807,824$ 0$ 22 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
48,379,143$ 172 348,792$ 59,992,224$

Team Total Estimate
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
62,685,916$ 63,875,356$ 30,431,391$ 19,199,690$



Depth Chart

Left WingCenterRight Wing
Jakob SilfverbergAGE:28PO:61OV:70
Michael GrabnerAGE:31PO:52OV:70
Ryan DzingelAGE:27PO:43OV:70
Tanner PearsonAGE:27PO:66OV:69
Anthony DuclairAGE:24PO:63OV:68
Leo KomarovAGE:32PO:30OV:68
Austin WatsonAGE:27PO:71OV:66
Marcus FolignoAGE:28PO:51OV:66
Matt MoulsonAGE:35PO:49OV:65
William CarrierAGE:24PO:67OV:64
Josh LeivoAGE:26PO:60OV:63
Dmytro TimashovAGE:22PO:63OV:61
Cody McLeodAGE:35PO:25OV:61
Kerby RychelAGE:24PO:78OV:60
Michael ChaputAGE:27PO:54OV:60
Cameron HebigAGE:22PO:63OV:57
Dylan StromeAGE:22PO:89OV:68
Leo KomarovAGE:32PO:30OV:68
Andrew CoppAGE:25PO:59OV:67
Austin WatsonAGE:27PO:71OV:66
Frederik GauthierAGE:24PO:80OV:63
Alex Barre-BouletAGE:22PO:63OV:62
Jayce HawrylukAGE:23PO:77OV:60
Nicholas BaptisteAGE:24PO:65OV:60
Nicolas RoyAGE:22PO:63OV:60
Michael ChaputAGE:27PO:54OV:60
Cameron HughesAGE:22PO:62OV:58
Aaron LuchukAGE:22PO:63OV:56
Jakob SilfverbergAGE:28PO:61OV:70
Michael GrabnerAGE:31PO:52OV:70
Ryan DzingelAGE:27PO:43OV:70
Kyle OkposoAGE:31PO:68OV:68
Anthony DuclairAGE:24PO:63OV:68
Leo KomarovAGE:32PO:30OV:68
Austin WatsonAGE:27PO:71OV:66
Marcus FolignoAGE:28PO:51OV:66
Saku MaenalanenAGE:25PO:56OV:64
Jeremy BraccoAGE:22PO:67OV:63
Filip ZadinaAGE:19PO:91OV:61
Dmytro TimashovAGE:22PO:63OV:61
Cody McLeodAGE:35PO:25OV:61
Jayce HawrylukAGE:23PO:77OV:60
Nicholas BaptisteAGE:24PO:65OV:60
Ville MeskanenAGE:23PO:61OV:60

Defense #1Defense #2Goalie
Mikhail SergachevAGE:21PO:86OV:69
Marco ScandellaAGE:29PO:57OV:67
Braydon CoburnAGE:34PO:46OV:67
Jakob ChychrunAGE:21PO:84OV:66
Zach BogosianAGE:29PO:72OV:66
Ryan GravesAGE:24PO:59OV:66
Thomas HickeyAGE:30PO:71OV:65
Scott HarringtonAGE:26PO:67OV:65
Jonathan EricssonAGE:35PO:26OV:64
Carl DahlstromAGE:24PO:72OV:63
Griffin ReinhartAGE:25PO:80OV:61
Rinat ValievAGE:24PO:65OV:60
Julian MelchioriAGE:27PO:53OV:60
Ben GleasonAGE:21PO:54OV:59
Justin HollAGE:27PO:61OV:58
Cam DineenAGE:21PO:70OV:57
Petr MrazekAGE:27PO:47OV:71
Keith KinkaidAGE:30PO:39OV:71
Juuse SarosAGE:24PO:62OV:69
Josef KorenarAGE:21PO:53OV:65
Patrik RybarAGE:25PO:51OV:65
Spencer MartinAGE:24PO:52OV:64
Filip GustavssonAGE:21PO:75OV:61

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Adam MarshRed Wings
Albin StormRed Wings
Alex VlasicRed Wings201940
Alexei EmelinRed Wings
Alexey MarchenkoRed Wings
Andrej NestrasilRed Wings
Anton SlepyshevRed Wings
Ben JohnsonRed Wings
Carl BerglundRed Wings2018143
Cody GlassRed Wings
Connor HurleyRed Wings
Curtis douglasRed Wings2018132
Dan BoyleRed Wings
Filip AhlRed Wings
Greg ChaseRed Wings
Guillaume Gelinas Red Wings
Hugo AlnefeltRed Wings201988
Jacob InghamRed Wings2018101
Jacob LeGuerrierRed Wings2019198
Jannik HansenRed Wings
Jimmy SchuldtRed Wings201883
Joey KeaneRed Wings2018134
Kirby Dach Red Wings20198
Louis BelpedioRed Wings
Nick Perbix Red Wings
Nick WolfRed Wings
Radek MuzikRed Wings2019166
Ryan ZuhlsdorfRed Wings
Tyler KelleherRed Wings
Vadim ShipachevRed Wings843

Draft Picks

Year R1R2R3R4R5R6R7
2020BUF LAK DET DET DET DET OTT DET
2021DET DET DET DET DET PIT DET DET
2022DET DET DET DET DET DET DET
2023DET DET DET DET DET DET DET
2024DET DET DET DET DET DET DET



[2019-09-04 13:02:07] - Griffins hired Bob Hartley for 550,000$ for 1 year(s).
[2019-09-04 13:01:33] - Red Wings hired Mike Babcock for 1,000,000$ for 1 year(s).
[2019-09-04 12:51:55] - Ben Gleason was added to Red Wings.
[2019-09-04 12:50:08] - Griffins fired Marc Crawford.
[2019-09-04 12:50:08] - Red Wings fired Mike Babcock.
[2019-09-04 12:36:01] - Team Name Change : Griffins changed name to Griffins
[2019-09-04 12:35:06] - Team Name Change : Grand Rapids Griffins changed name to Griffins
[2019-07-14 20:03:13] - TRADE : From Red Wings to Penguins : Jordan Weal (64).
[2019-07-14 20:03:13] - TRADE : From Penguins to Red Wings : Ben Gleason (P), Y:2021-RND:6-PIT.
[2019-07-14 19:44:58] - Michael Leighton was released.
[2019-07-14 19:44:58] - Red Wings paid 0 $ to release Michael Leighton.
[2019-07-14 19:44:38] - Brian Lashoff was released.
[2019-07-14 19:44:38] - Red Wings paid 0 $ to release Brian Lashoff.
[2019-07-14 19:37:18] - Landon Ferraro was released.
[2019-07-14 19:37:18] - Red Wings paid 0 $ to release Landon Ferraro.
[2019-07-14 19:19:01] - Alan Quine was released.
[2019-07-14 19:19:01] - Red Wings paid 0 $ to release Alan Quine.
[2019-07-11 22:53:42] - TRADE : From Red Wings to Avalanche : Y:2020-RND:2-DET.
[2019-07-11 22:52:25] - Andrew Copp was added to Red Wings.
[2019-07-11 22:14:52] - Matt Moulson was added to Red Wings.
[2019-07-11 21:36:47] - TRADE : From Red Wings to Flyers : Joshua Ho-Sang (60).
[2019-07-11 21:36:47] - TRADE : From Flyers to Red Wings : Leo Komarov (68).
[2019-07-03 20:08:01] - Keith Kinkaid was added to Red Wings.
[2019-07-03 08:26:18] - Kyle Okposo was added to Red Wings.
[2019-06-20 21:59:14] - Red Wings drafts Jacob LeGuerrier as the #198 overall pick in the Entry Draft of year 2019.



OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201782244404532214280-6641152102201107130-234192302331107150-43482143555691056767592103573779704722409804112015113226219.25%48012573.96%4801165848.31%907194246.70%525113446.30%157076318018231590795
201882273804751217236-1941151702430111115-441122102321106121-15542173916081277666514224573370777360249271469319482975217.51%3175383.28%21218265145.94%1221285042.84%547125643.55%1859126920726151037500
201963300000161513210000074331200000911-261629450245701675749610166367112623521.74%31390.32%010721150.71%9221043.81%419045.56%13892144457738
Total Regular Season1705485081283447531-8485323904631225249-2485224604652222282-60108447775122224137147147234515136315351538132506715541884358564211918.54%82818178.14%62126452047.04%2220500244.38%1113248044.88%356821244018148427051335