Red Wings

GP: 35 | W: 16 | L: 16 | OTL: 3 | P: 35
GF: 88 | GA: 95 | PP%: 20.59% | PK%: 85.42%
GM : Marc Pelletier | Morale : 75 | Team Overall : 68
Next Games #529 vs Blue Jackets

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jakob SilfverbergXX100.005939857678828673567174807277736175700
2Michael GrabnerXX97.006637898075775473546674837180735275700
3Ryan DzingelXX99.006344827772829176597378637573724375700
4Nazem KadriXXX100.007745727674818675807476587277747075700
5Dylan StromeX100.005337867483819273797772637463658975680
6Kyle OkposoX100.007345787278848370627169637279736875680
7Leo KomarovXXX100.009240806574769563716664826380733075680
8Anthony DuclairXX100.005937887671738774526772687367696375680
9Andrew CoppX100.007435916579718264766863846469675975670
10Marcus FolignoXX100.008967696489719563566562746375685175660
11Matt MoulsonX100.006438856478939163696262616386764975650
12Jeff PetryX97.008638847382899572307871745880735875720
13Nick LeddyX100.007337887875879374307765595675687175690
14Mikhail SergachevX97.007839817386838872307768625861638675690
15Danny DeKeyserX100.007848776682887364307265835277723675680
16Zach BogosianX100.007964686489877863307256804977697275660
17Jonathan EricssonX100.008347745990836558306357745285762675640
Scratches
1Zach PariseXX92.006138847771848776547579767885804375720
2Austin WatsonXXX100.009065596587725964566268836673687175660
3Thomas HickeyX100.007344786471766363307458815378707175650
TEAM AVERAGE99.10744480707981826952716873647671587568
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Keith Kinkaid100.00868785828584868584868578843975710
2Petr Mrazek100.00878684758685878685878673774775710
Scratches
TEAM AVERAGE100.0087878579868587868587867681437571
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mike Babcock64729379939399CAN5511,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Zach PariseRed WingsLW/RW31121729640176912834919.38%1169922.552462410801151023144.52%28300020.8300000241
2Jakob SilfverbergRed WingsLW/RW3561824-6100346811948895.04%772120.613710331120003773037.50%16000000.6701000302
3Michael GrabnerRed WingsLW/RW35121123-7404181108277911.11%668419.555510221070003794036.89%10300000.6711000121
4Dylan StromeRed WingsC3541620-1212018726729605.97%059517.020111114950000202052.57%70000000.6701000020
5Ryan DzingelRed WingsLW/RW2911920-4155434174164014.86%159920.6942613960001721032.81%6400000.6701001104
6Nazem KadriRed WingsC/LW/RW27812204280794055184314.55%152419.4421314901011320055.51%48100000.7600000212
7Jeff PetryRed WingsD3551419-14260107545114499.80%3984424.1235834113000092100.00%000000.4500000102
8Nick LeddyRed WingsD3621315-21603126248228.33%3066118.381341787011075010.00%000000.4500000030
9Leo KomarovRed WingsC/LW/RW3531114-4400113615222555.77%752815.1025719620000301150.08%59100000.5300000200
10Danny DeKeyserRed WingsD3541014-129571445110337.84%4972220.642242480000096000.00%000000.3900100002
11Anthony DuclairRed WingsLW/RW357411-35533762214711.29%242012.01000010000160036.11%3600000.5201001112
12Mikhail SergachevRed WingsD333710-1326046233115369.68%2873522.2916715102000096000.00%000000.2700000010
13Kyle OkposoRed WingsRW35257-1217537315313423.77%248713.93112553000000048.48%6600000.2901001000
14Andrew CoppRed WingsC3534706013353610198.33%33098.84000000000320050.78%25800000.4500000001
15Austin WatsonRed WingsC/LW/RW3024641604626329336.25%92518.3700000000030046.86%17500000.4800000100
16Marcus FolignoRed WingsLW/RW351452175379192185.26%22467.03000110001280052.94%1700000.4100001000
17Zach BogosianRed WingsD34134658106625179145.88%3254115.93011527000043000.00%000000.1500200010
18Matt MoulsonRed WingsLW25123-1006852720.00%01425.6900002000030055.00%6000000.4200000000
19Thomas HickeyRed WingsD2002204013135620.00%1024312.1800013000010000.00%000000.1600000000
20Jonathan EricssonRed WingsD17011-312034114220.00%1524914.6900000000025000.00%000000.0800000000
21Filip ZadinaGriffins (DET)RW7011-200034090.00%0669.4700003000000040.00%500000.3000000000
Team Total or Average63987168255-62345358557779973157908.73%2541027516.0826537924111531231494015349.28%299900020.5016304141517
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Petr MrazekRed Wings2110910.8982.59116001504910000.71472013200
2Keith KinkaidRed Wings176720.9022.7994803444470000.00001520200
Team Total or Average38161630.9002.68210804949380000.71473533400


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Andrew CoppRed WingsC251994-07-08No206 Lbs6 ft1NoNoNo4RFAPro & Farm2,500,000$2,500,000$1,491,935$NoLink / NHL Link
Anthony DuclairRed WingsLW/RW241995-08-26No191 Lbs5 ft11NoNoNo2RFAPro & Farm650,000$650,000$387,903$NoLink / NHL Link
Austin WatsonRed WingsC/LW/RW271992-01-13No204 Lbs6 ft4NoNoNo3RFAPro & Farm3,800,000$3,800,000$2,267,742$NoLink / NHL Link
Danny DeKeyserRed WingsD291990-03-07No192 Lbs6 ft3NoNoNo1UFAPro & Farm2,250,000$2,250,000$1,342,742$NoLink / NHL Link
Dylan StromeRed WingsC221997-03-07No200 Lbs6 ft3NoNoNo1ELCPro & Farm863,333$863,333$515,215$NoLink / NHL Link
Jakob SilfverbergRed WingsLW/RW281990-10-13No204 Lbs6 ft1NoNoNo3UFAPro & Farm3,750,000$3,750,000$2,237,903$NoLink / NHL Link
Jeff PetryRed WingsD311987-12-09No197 Lbs6 ft3NoNoNo1UFAPro & Farm7,000,000$7,000,000$4,177,419$NoLink / NHL Link
Jonathan EricssonRed WingsD351984-03-02No220 Lbs6 ft4NoNoNo1UFAPro & Farm4,250,000$4,250,000$2,536,290$NoLink / NHL Link
Keith KinkaidRed WingsG301989-07-04No195 Lbs6 ft3NoNoNo3UFAPro & Farm4,500,000$4,500,000$2,685,484$NoLink / NHL Link
Kyle OkposoRed WingsRW311988-04-16No219 Lbs6 ft0NoNoNo4UFAPro & Farm6,000,000$6,000,000$3,580,645$NoLink / NHL Link
Leo KomarovRed WingsC/LW/RW321987-01-23No209 Lbs5 ft11NoNoNo2UFAPro & Farm2,950,000$2,950,000$1,760,484$NoLink / NHL Link
Marcus FolignoRed WingsLW/RW281991-08-10No228 Lbs6 ft3NoNoNo3UFAPro & Farm2,800,000$2,800,000$1,670,968$NoLink / NHL Link
Matt MoulsonRed WingsLW351983-11-01No203 Lbs6 ft1NoNoNo2UFAPro & Farm1,000,000$1,000,000$596,774$NoLink / NHL Link
Michael GrabnerRed WingsLW/RW311987-10-05No188 Lbs6 ft1NoNoNo3UFAPro & Farm3,350,000$3,350,000$1,999,194$NoLink / NHL Link
Mikhail SergachevRed WingsD211998-06-25No215 Lbs6 ft3NoNoNo1ELCPro & Farm894,166$894,166$533,615$NoLink / NHL Link
Nazem KadriRed WingsC/LW/RW281990-10-06No192 Lbs6 ft0NoNoNo1UFAPro & Farm4,100,000$4,100,000$2,446,774$NoLink / NHL Link
Nick LeddyRed WingsD281991-03-20No207 Lbs6 ft0NoNoNo1UFAPro & Farm4,000,000$4,000,000$2,387,097$NoLink / NHL Link
Petr MrazekRed WingsG271992-02-14No190 Lbs6 ft1NoNoNo2RFAPro & Farm4,000,000$4,000,000$2,387,097$NoLink / NHL Link
Ryan DzingelRed WingsLW/RW271992-03-09No190 Lbs6 ft0NoNoNo1RFAPro & Farm1,800,000$1,800,000$1,074,194$NoLink / NHL Link
Thomas HickeyRed WingsD301989-02-08No183 Lbs6 ft0NoNoNo3UFAPro & Farm2,200,000$2,200,000$1,312,903$NoLink / NHL Link
Zach BogosianRed WingsD291990-07-15No226 Lbs6 ft3NoNoNo1UFAPro & Farm5,142,857$5,142,857$3,069,124$NoLink / NHL Link
Zach PariseRed WingsLW/RW351984-07-28No193 Lbs5 ft11NoNoNo5UFAPro & Farm7,538,461$7,538,461$4,498,759$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2228.77202 Lbs6 ft12.183,424,492$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
75,338,817$45,038,461$36,438,461$16,038,461$7,538,461$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nazem KadriRyan Dzingel38122
2Michael GrabnerDylan StromeJakob Silfverberg32122
3Anthony DuclairLeo KomarovKyle Okposo20122
4Marcus FolignoAndrew Copp10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeff PetryMikhail Sergachev40122
2Nick LeddyDanny DeKeyser30122
3Zach BogosianJonathan Ericsson20122
4Jeff PetryMikhail Sergachev10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nazem KadriRyan Dzingel60122
2Michael GrabnerDylan StromeJakob Silfverberg40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeff PetryMikhail Sergachev60122
2Nick LeddyDanny DeKeyser40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Ryan Dzingel60122
2Michael GrabnerNazem Kadri40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeff PetryMikhail Sergachev60122
2Nick LeddyDanny DeKeyser40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Jeff PetryMikhail Sergachev60122
2Ryan Dzingel40122Nick LeddyDanny DeKeyser40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Ryan Dzingel60122
2Michael GrabnerNazem Kadri40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeff PetryMikhail Sergachev60122
2Nick LeddyDanny DeKeyser40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nazem KadriRyan DzingelJeff PetryMikhail Sergachev
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nazem KadriRyan DzingelJeff PetryMikhail Sergachev
Extra Forwards
Normal PowerPlayPenalty Kill
Matt Moulson, Kyle Okposo, Anthony DuclairMatt Moulson, Kyle OkposoAnthony Duclair
Extra Defensemen
Normal PowerPlayPenalty Kill
Zach Bogosian, Jonathan Ericsson, Nick LeddyZach BogosianJonathan Ericsson, Nick Leddy
Penalty Shots
, Ryan Dzingel, Michael Grabner, Nazem Kadri, Jakob Silfverberg
Goalie
#1 : Keith Kinkaid, #2 : Petr Mrazek
Custom OT Lines Forwards
, Ryan Dzingel, Michael Grabner, Nazem Kadri, Jakob Silfverberg, Dylan Strome, Dylan Strome, Kyle Okposo, Anthony Duclair, Leo Komarov, Andrew Copp
Custom OT Lines Defensemen
Jeff Petry, Mikhail Sergachev, Nick Leddy, Danny DeKeyser, Zach Bogosian


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3535W28816225096693826034483404
All Games
GPWLOTWOTL SOWSOLGFGA
35151612018895
Home Games
GPWLOTWOTL SOWSOLGFGA
1810800004744
Visitor Games
GPWLOTWOTL SOWSOLGFGA
175812014151
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1362820.59%1442185.42%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
335284336182830292
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
598121349.30%567114949.35%24549949.10%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
833570833261444221


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2019-10-0525Red Wings4Predators6LBoxScore
5 - 2019-10-0632Stars0Red Wings2WBoxScore
7 - 2019-10-0840Ducks4Red Wings2LBoxScore
9 - 2019-10-1048Red Wings1Canadiens4LBoxScore
11 - 2019-10-1267Maple Leafs0Red Wings3WBoxScore
14 - 2019-10-1589Red Wings4Canucks1WBoxScore
16 - 2019-10-17103Red Wings1Flames2LXXBoxScore
17 - 2019-10-18111Red Wings3Oilers1WBoxScore
21 - 2019-10-22137Canucks3Red Wings5WBoxScore
22 - 2019-10-23143Red Wings3Senators2WXBoxScore
24 - 2019-10-25159Sabres4Red Wings0LBoxScore
26 - 2019-10-27171Blues4Red Wings1LBoxScore
28 - 2019-10-29184Oilers1Red Wings2WBoxScore
31 - 2019-11-01199Red Wings1Hurricanes3LBoxScore
32 - 2019-11-02209Red Wings3Panthers2WBoxScore
34 - 2019-11-04222Predators4Red Wings1LBoxScore
36 - 2019-11-06235Red Wings1Rangers2LBoxScore
38 - 2019-11-08249Bruins3Red Wings6WBoxScore
40 - 2019-11-10266Golden Knights4Red Wings5WBoxScore
42 - 2019-11-12278Red Wings1Ducks4LBoxScore
44 - 2019-11-14293Red Wings1Kings4LBoxScore
46 - 2019-11-16313Red Wings2Sharks3LXBoxScore
49 - 2019-11-19323Senators2Red Wings3WBoxScore
51 - 2019-11-21337Red Wings1Blue Jackets5LBoxScore
53 - 2019-11-23356Red Wings3Devils4LBoxScore
54 - 2019-11-24363Hurricanes3Red Wings2LBoxScore
57 - 2019-11-27379Maple Leafs1Red Wings4WBoxScore
59 - 2019-11-29397Red Wings4Flyers5LXBoxScore
60 - 2019-11-30407Capitals2Red Wings1LBoxScore
62 - 2019-12-02421Islanders0Red Wings5WBoxScore
67 - 2019-12-07456Penguins5Red Wings2LBoxScore
70 - 2019-12-10477Red Wings4Jets2WBoxScore
72 - 2019-12-12491Jets4Red Wings0LBoxScore
74 - 2019-12-14508Red Wings4Canadiens1WBoxScore
75 - 2019-12-15517Kings0Red Wings3WBoxScore
77 - 2019-12-17529Blue Jackets-Red Wings-
81 - 2019-12-21557Red Wings-Maple Leafs-
82 - 2019-12-22567Coyotes-Red Wings-
88 - 2019-12-28596Red Wings-Panthers-
89 - 2019-12-29607Red Wings-Lightning-
91 - 2019-12-31620Sharks-Red Wings-
94 - 2020-01-03640Red Wings-Stars-
96 - 2020-01-05657Red Wings-Blackhawks-
98 - 2020-01-07669Canadiens-Red Wings-
101 - 2020-01-10689Senators-Red Wings-
103 - 2020-01-12705Sabres-Red Wings-
105 - 2020-01-14717Red Wings-Islanders-
108 - 2020-01-17740Penguins-Red Wings-
109 - 2020-01-18749Panthers-Red Wings-
111 - 2020-01-20759Red Wings-Avalanche-
113 - 2020-01-22767Red Wings-Wild-
122 - 2020-01-31785Red Wings-Rangers-
123 - 2020-02-01797Rangers-Red Wings-
125 - 2020-02-03811Flyers-Red Wings-
128 - 2020-02-06827Red Wings-Sabres-
129 - 2020-02-07841Red Wings-Blue Jackets-
131 - 2020-02-09855Bruins-Red Wings-
133 - 2020-02-11866Red Wings-Sabres-
135 - 2020-02-13884Red Wings-Devils-
137 - 2020-02-15895Red Wings-Bruins-
138 - 2020-02-16906Red Wings-Penguins-
140 - 2020-02-18923Canadiens-Red Wings-
143 - 2020-02-21941Red Wings-Islanders-
145 - 2020-02-23963Flames-Red Wings-
147 - 2020-02-25975Devils-Red Wings-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2020-02-27989Wild-Red Wings-
151 - 2020-02-291005Red Wings-Senators-
153 - 2020-03-021017Avalanche-Red Wings-
157 - 2020-03-061044Blackhawks-Red Wings-
159 - 2020-03-081060Lightning-Red Wings-
161 - 2020-03-101074Hurricanes-Red Wings-
163 - 2020-03-121087Red Wings-Capitals-
165 - 2020-03-141100Red Wings-Lightning-
167 - 2020-03-161121Panthers-Red Wings-
171 - 2020-03-201152Red Wings-Coyotes-
172 - 2020-03-211160Red Wings-Golden Knights-
175 - 2020-03-241176Red Wings-Bruins-
177 - 2020-03-261196Flyers-Red Wings-
179 - 2020-03-281210Capitals-Red Wings-
182 - 2020-03-311233Red Wings-Blues-
184 - 2020-04-021242Red Wings-Maple Leafs-
186 - 2020-04-041264Lightning-Red Wings-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity60005000200040001000
Ticket Price80503020175
Attendance108,00085,71136,00063,67217,847
Attendance PCT100.00%95.23%100.00%88.43%99.15%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
23 17291 - 96.06% 1,290,410$23,227,371$18000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
29,608,706$ 75,338,817$ 68,238,817$ 0$ 0$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
75,338,817$ 29,205,488$ 0$ 22 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
29,679,418$ 111 410,424$ 45,557,064$

Team Total Estimate
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
47,145,030$ 75,338,817$ 25,513,090$ 9,987,799$



Depth Chart

Left WingCenterRight Wing
Zach PariseAGE:35PO:43OV:72
Nazem KadriAGE:28PO:70OV:70
Jakob SilfverbergAGE:28PO:61OV:70
Michael GrabnerAGE:31PO:52OV:70
Ryan DzingelAGE:27PO:43OV:70
Anthony DuclairAGE:24PO:63OV:68
Leo KomarovAGE:32PO:30OV:68
Austin WatsonAGE:27PO:71OV:66
Marcus FolignoAGE:28PO:51OV:66
Matt MoulsonAGE:35PO:49OV:65
William CarrierAGE:24PO:67OV:64
Dmytro TimashovAGE:22PO:63OV:61
Kerby RychelAGE:24PO:78OV:60
Michael ChaputAGE:27PO:54OV:60
Cameron HebigAGE:22PO:63OV:57
Nazem KadriAGE:28PO:70OV:70
Dylan StromeAGE:22PO:89OV:68
Leo KomarovAGE:32PO:30OV:68
Andrew CoppAGE:25PO:59OV:67
Austin WatsonAGE:27PO:71OV:66
Frederik GauthierAGE:24PO:80OV:63
Alex Barre-BouletAGE:22PO:63OV:62
Jayce HawrylukAGE:23PO:77OV:60
Nicholas BaptisteAGE:24PO:65OV:60
Nicolas RoyAGE:22PO:63OV:60
Michael ChaputAGE:27PO:54OV:60
Cameron HughesAGE:22PO:62OV:58
Aaron LuchukAGE:22PO:63OV:56
Zach PariseAGE:35PO:43OV:72
Nazem KadriAGE:28PO:70OV:70
Jakob SilfverbergAGE:28PO:61OV:70
Michael GrabnerAGE:31PO:52OV:70
Ryan DzingelAGE:27PO:43OV:70
Kyle OkposoAGE:31PO:68OV:68
Anthony DuclairAGE:24PO:63OV:68
Leo KomarovAGE:32PO:30OV:68
Austin WatsonAGE:27PO:71OV:66
Marcus FolignoAGE:28PO:51OV:66
Saku MaenalanenAGE:25PO:56OV:64
Jeremy BraccoAGE:22PO:67OV:63
Filip ZadinaAGE:19PO:91OV:61
Dmytro TimashovAGE:22PO:63OV:61
Jayce HawrylukAGE:23PO:77OV:60
Nicholas BaptisteAGE:24PO:65OV:60
Ville MeskanenAGE:23PO:61OV:60

Defense #1Defense #2Goalie
Jeff PetryAGE:31PO:58OV:72
Mikhail SergachevAGE:21PO:86OV:69
Nick LeddyAGE:28PO:71OV:69
Danny DeKeyserAGE:29PO:36OV:68
Zach BogosianAGE:29PO:72OV:66
Thomas HickeyAGE:30PO:71OV:65
Scott HarringtonAGE:26PO:67OV:65
Jonathan EricssonAGE:35PO:26OV:64
Carl DahlstromAGE:24PO:72OV:63
Griffin ReinhartAGE:25PO:80OV:61
Rinat ValievAGE:24PO:65OV:60
Julian MelchioriAGE:27PO:53OV:60
Ben GleasonAGE:21PO:54OV:59
Justin HollAGE:27PO:61OV:58
Cam DineenAGE:21PO:70OV:57
Petr MrazekAGE:27PO:47OV:71
Keith KinkaidAGE:30PO:39OV:71
Josef KorenarAGE:21PO:53OV:65
Patrik RybarAGE:25PO:51OV:65
Spencer MartinAGE:24PO:52OV:64
Filip GustavssonAGE:21PO:75OV:61

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Adam MarshRed Wings
Albin StormRed Wings
Alex VlasicRed Wings201940
Alexei EmelinRed Wings
Alexey MarchenkoRed Wings
Andrej NestrasilRed Wings
Anton SlepyshevRed Wings
Ben JohnsonRed Wings
Carl BerglundRed Wings2018143
Cody GlassRed Wings
Connor HurleyRed Wings
Curtis douglasRed Wings2018132
Dan BoyleRed Wings
Filip AhlRed Wings
Greg ChaseRed Wings
Guillaume Gelinas Red Wings
Hugo AlnefeltRed Wings201988
Jacob InghamRed Wings2018101
Jacob LeGuerrierRed Wings2019198
Jannik HansenRed Wings
Joey KeaneRed Wings2018134
Louis BelpedioRed Wings
Nick Perbix Red Wings
Nick WolfRed Wings
Radek MuzikRed Wings2019166
Rick NashRed Wings
Ryan ZuhlsdorfRed Wings
Tyler KelleherRed Wings
Vadim ShipachevRed Wings843

Draft Picks

Year R1R2R3R4R5R6R7
2020BUF LAK DET DET DET DET OTT DET
2021DET DET DET DET DET PIT DET DET
2022DET DET DET DET DET DET DET
2023DET DET DET DET DET DET DET
2024DET DET DET DET DET DET DET



[2019-10-27 08:53:23] - TRADE : From Penguins to Red Wings : Rick Nash (P).
[2019-10-27 08:53:23] - TRADE : From Red Wings to Penguins : Cody McLeod (61).
[2019-10-19 07:58:41] - TRADE : From Red Wings to Lightning : Juuse Saros (69), Jakob Chychrun (66), Tanner Pearson (69), Kirby Dach (P).
[2019-10-19 07:58:41] - TRADE : From Lightning to Red Wings : Nazem Kadri (70), Zach Parise (72), Danny DeKeyser (68).
[2019-10-18 08:04:14] - TRADE : From Red Wings to Jets : Braydon Coburn (67), Marco Scandella (67), Ryan Graves (66), Josh Leivo (63), Jimmy Schuldt (P).
[2019-10-18 08:04:14] - TRADE : From Jets to Red Wings : Jeff Petry (72), Nick Leddy (69).
[2019-09-04 13:02:07] - Griffins hired Bob Hartley for 550,000$ for 1 year(s).
[2019-09-04 13:01:33] - Red Wings hired Mike Babcock for 1,000,000$ for 1 year(s).
[2019-09-04 12:51:55] - Ben Gleason was added to Red Wings.
[2019-09-04 12:50:08] - Griffins fired Marc Crawford.
[2019-09-04 12:50:08] - Red Wings fired Mike Babcock.
[2019-09-04 12:36:01] - Team Name Change : Griffins changed name to Griffins
[2019-09-04 12:35:06] - Team Name Change : Grand Rapids Griffins changed name to Griffins
[2019-07-14 20:03:13] - TRADE : From Red Wings to Penguins : Jordan Weal (64).
[2019-07-14 20:03:13] - TRADE : From Penguins to Red Wings : Ben Gleason (P), Y:2021-RND:6-PIT.
[2019-07-14 19:44:58] - Michael Leighton was released.
[2019-07-14 19:44:58] - Red Wings paid 0 $ to release Michael Leighton.
[2019-07-14 19:44:38] - Brian Lashoff was released.
[2019-07-14 19:44:38] - Red Wings paid 0 $ to release Brian Lashoff.
[2019-07-14 19:37:18] - Landon Ferraro was released.
[2019-07-14 19:37:18] - Red Wings paid 0 $ to release Landon Ferraro.
[2019-07-14 19:19:01] - Alan Quine was released.
[2019-07-14 19:19:01] - Red Wings paid 0 $ to release Alan Quine.
[2019-07-11 22:53:42] - TRADE : From Red Wings to Avalanche : Y:2020-RND:2-DET.
[2019-07-11 22:52:25] - Andrew Copp was added to Red Wings.
[2019-07-11 22:14:52] - Matt Moulson was added to Red Wings.
[2019-07-11 21:36:47] - TRADE : From Red Wings to Flyers : Joshua Ho-Sang (60).
[2019-07-11 21:36:47] - TRADE : From Flyers to Red Wings : Leo Komarov (68).
[2019-07-03 20:08:01] - Keith Kinkaid was added to Red Wings.
[2019-07-03 08:26:18] - Kyle Okposo was added to Red Wings.



OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201782244404532214280-6641152102201107130-234192302331107150-43482143555691056767592103573779704722409804112015113226219.25%48012573.96%4801165848.31%907194246.70%525113446.30%157076318018231590795
201882273804751217236-1941151702430111115-441122102321106121-15542173916081277666514224573370777360249271469319482975217.51%3175383.28%21218265145.94%1221285042.84%547125643.55%1859126920726151037500
2019351516012018895-71810800000474431758012014151-103588162250042830292966335284336189382603448341362820.59%1442185.42%1598121349.30%567114949.35%24549949.10%833570833261444221
Total Regular Season1996698091484519611-92100404604631265289-2499265205853254322-68137519908142726161172169255314164117701813150583917782157429375514218.81%94119978.85%72617552247.39%2695594145.36%1317288945.59%426326024707170030721518